和为定值的最值问题是公务员行测考试中非常常见的一种题型,对于这种题型的解答一直是广大考生非常头疼的,考生对于这种题型普遍都有这样的感受“要么就是没有思路,要么就是解答题来非常的慢,往往还经常出错”,那么在这里华政教育专家给广大的考生讲解一种非常快速而且有效的方法,就是利用方程和极限思想巧解和为定值的最值问题。
1.什么是和为定值的最值问题:多个数的和是一个定值,求其中某个数的最大值或者最小值的问题。
2.什么是方程思想:从分析问题的数量关系入手,通过设定未知数,把问题中的已知量与未知量的数量关系,转化为方程或方程组等数学模型,然后利用方程的理论或方法,使问题得到解决。
3 .解决问题的核心思想:如果要求某个数的最大值,则要其余的数尽可能的小;如果要求某个数的最小值,则要其余的数尽可能的大。
例如:三个人的年龄和为36岁,且三个人的年龄各不相同,要求这三个人当中年龄最大的人最少为多少岁?
华政解析:三个人的年龄之和为36岁,要求年龄最大的人最小为多少岁,则要求另外两个人的年龄都尽可能的大,将年龄最大人的年龄设为X,因为另外两个人的年龄要尽可能大,但又不能超过最大人的年龄,且三个人的年龄各不相同,所以另外两个人的年龄分别为X-1,X-2,所以有X+X-1+X-2=36,解出X等于13,所以年龄最大的人最小为13岁。
广大的考生会发现,利用方程思想能够清晰的将每个人的年龄用未知数表示,然后根据题目中的等量关系列出等式就能够快速的解出答案了。那么,下面华政教育专家通过两个真题再详细的给广大考生讲解怎么利用方程思想解决和为定值的最值问题。
例题1. 10个箱子总重100公斤,且重量排在前三位的箱子总重不超过重量排在后三位的箱子总重的1.5倍。问最重的箱子重量最多是多少公斤?
A. B. C.20 D.25
华政解析:【答案】B。要使最重的箱子重量尽可能大,则其余箱子重量尽可能小,最极端情况为其余九个箱子都相等。因此设排在后九位的箱子的重量均为x公斤,可知排在第一位的箱子的重量为1.5x×3-2x=2.5x。可列方程:9x+2.5x=100,解之得x= ,则最重的箱子的重量为2.5× = 公斤。
例题2.某单位2011年招聘了65名毕业生,拟分配到该单位的7个不同部门。假设行政部门分得的毕业生人数比其他部门都多,问行政部门分得的毕业生人数至少为多少名?
A、10 B、11 C、12 D、13
华政解析:【答案】B。假设行政部门最少分得X个人,要求行政部门最少,则要求其余的部门都尽可能的多,而其余部门的人都不能超过行政部门的人,所以其余6各部门的人最多都为X-1人,根据总数为65人列出等量关系,X+6(X-1)=65,解得X等于 ,也就是说最少分 个人,但是由于人数只能是整数个,所以最少分11人。
和为定值的最值问题是比较重要的题型,不管是在国考还是在省考还是在事业单位等考试中都比较常见,希望广大考生能够掌握这种快速而准确的解题方法,多加练习,在未来的考试中取得好的成绩!